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Background: Analyzing longitudinal gene expression data
is extremely challenging due to limited prior information,
high dimensionality, and heterogeneity. Similar difficulties
arise in research of multifactorial diseases such as Type 2
Diabetes. Clustering methods can be applied to automatically
group similar observations. Common clinical values within
the resulting groups suggest potential associations. However,
applying traditional clustering methods to gene expression
over time fails to capture variations in the response. Therefore,
shape-based clustering could be applied to identify patient
groups by gene expression variation in a large time metabolic
compensatory intervention.

Objectives: To search for clinical grouping patterns between
subjects that showed similar structure in the variation of IL-
1B gene expression over time.

Methods: A new approach for shape-based clustering by
IL-1p expression behavior was applied to a real longitudinal
database of Type 2 Diabetes patients. In order to capture
correctly variations in the response, we applied traditional
clustering methods to slopes between measurements.
Results: In this setting, the application of K-Medoids using
the Manhattan distance yielded the best results for the
corresponding database. Among the resulting groups, one
of the clusters presented significant differences in many
key clinical values regarding the metabolic syndrome in
comparison to the rest of the data.
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Conclusions: The proposed method can be used to group
patients according to variation patterns in gene expression (or
other applications) and thus, provide clinical insights even when
there is no previous knowledge on the subject clinical profile and
few timepoints for each individual.

Introduction

Type 2 Diabetes (T2D) is one of the most complex, prevalent
and heterogeneous etiology  involves
multiple interactions between genetic predisposing factors
and environmental triggers [1]. Inflammation is a relevant
component of the pathophysiological alterations that define the
progression from metabolic syndrome to T2D [2]. Interleukin-1
beta (IL-1PB) is a proinflammatory cytokine related to this
clinical inflammation in T2D individuals, and is a well-known
immune system modulator secreted by activated macrophages
that can affect B-cell function and reduce insulin secretion [3].
Currently, one of the most important lines of research in diabetes
is precision medicine, with the principal aim of grouping T2D
individuals in different clinical subtypes defined by biomarkers.
This group identification could be translated into an emerging
approach to disease treatment and prevention that considers
individual variability in genes, environment and lifestyle [4].
In this way, Ahlqvist et al. could recently break down T2D
subjects into five distinct subgroups, with an improvement

diseases whose

prediction of disease progression and outcome by including
six variables (age at diagnosis, body mass index [BMI],
glycated haemoglobin [HbAlc] , Glutamic Acid Decarboxylase
Autoantibodies [GADA], estimation of insulin secretion
[HOMA-B] and estimation of insulin-sensitivity [HOMA-IS])
[5]. The measurement of GADA by Ahlqvist et al. assessed the
possible diagnosis of LADA (Latent Autoimmune Diabetes in
Adults). The role of precision medicine in diabetes management
was recognized by the American Diabetes Association (ADA)
in collaboration with the European Association for the Study
of Diabetes (EASD), which launched the Precision Medicine
Initiative in 2018 in Diabetes [6]. The ultimate goal of precision
medicine is the personalized provision of medical care, with
better recognition of people at high risk for the development
of T2D and its complications, and the implementation of
personalized treatments at the individual level. In this sense,
artificial intelligence could be used to detect clinical subtypes
by matching individuals to their combinations of different
biomarkers, with techniques such as large-scale prediction
models. In the last decades, there have been great developments
in methods for gene expression analysis, giving rise to an
abundant quantity of data [7]. Since the amount of data grows
faster than the ability to understand their implications, methods
that allow drawing conclusions from gene expression data can be
very useful to narrow this gap. The analysis of gene expression
data can be very challenging due to limited prior knowledge
on the observed phenomenon, heterogeneity, noise in the data
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and missing observations in the subject data [8]. Therefore, data
mining tools that can provide potential relationships among
framework. Longitudinal studies include repeated measures of
a variable of interest -usually called a response- in the same
subject over time, yielding multiple responses per individual
noted as a response trajectory. In this work, the response
variable relates to gene expression at a certain time point and the
response trajectory describes the evolution of gene expression
for a certain individual over time. It must be pointed out that
when there are few time points and mistimed measurements, the
mathematical tools that can be used are limited. For example,
Fourier transformations, the standard procedure for time series,
are no longer valid for few measurements. In this setting, the
increase or decrease of gene expression between different
measurement occasions can be studied [9]. Variables can be very
useful for a clinical comprehension Clustering algorithms aim to
group observations according to some measure of similarity, or
conversely, to separate observations according to dissimilarity.
When quantitative variables are involved, the dissimilarity can
be based on distance measures. The selection of these features
is closely related to the application area and the research
objective. Regarding clustering algorithms, K-Means is the most
popular method due to the low computational complexity of
the algorithm and performance in big data. A variation of this
method is the Kernel Based K-means algorithm [10]. The major
disadvantage of these algorithms is the susceptibility to outliers
and to the random initial group assignment. Another alternative is
the K-Medoids algorithm [11]. This algorithm is more robust to
outliers and initialization than K-means. Some works proposed
clustering subjects according to the corresponding variation
of gene expression, suggesting associations between a certain
behavior in the gene expression over time with other variables
[9], [12]. Many publications used this approach assuming
simultaneous measurements to cluster different genes according
to the increase or decrease in their expression, defining groups of
co-expressed genes, or activating and repressing genes [13-18].
On most occasions, data corresponding to different subjects are
not simultaneously collected, and other strategies must be used.
Moller et al., applied a clustering algorithm to the transcriptional
program of budding yeast, allowing mistimed measurements
[19-20]. In a similar way, similarities in the variation of gene
expression, can suggest associations with observable clinical
features, which can be a starting point for further investigation.

Objectives

The main objective of this work was to cluster subjects in order
to find relationships between patterns in Interleukin 1-beta (IL-
1B) variation and clinical metabolic variables from a database of
T2D patients. Also, to focus potential associations with obesity
and metabolic syndrome as central clinical phenotypes. In this
article, we perform a new analysis of data from a cohort of
patients previously studied by our research group [21].
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Materials and methods

1. Prospective controlled study database

The database used for the development of the clustering
algorithm included the results of a prospective controlled
study conducted in patients with newly diagnosed T2D and
hyperglycemia (HbAlc > 8%), and after 6 and 12 months of
treatment to achieve metabolic remission (HbAlc < 7%). The
treatment was personalized: each participant received the first-
line pharmacological treatment, and in all cases lifestyle changes
were included through diet and physical exercise. Detailed
information on this population can be found in our previously
published manuscript [21]. It was the first follow-up study that
evaluated IL-1B mRNA expression in hyperglycemic people
with T2D after glycemic normalization treatment.

The study was conducted in a group of 30 adults (23.33% were
female subjects and 76.67% male subjects) with a median age
of 46 years (IQR 18.75 years) recruited from the Diabetes Care
Unit. All procedures performed in the study were in accordance
with the ethical standards of the institutional research committee,
the 1964 Helsinki Declaration and its later amendments or
comparable ethical standards. The study was approved by the
Ethics Committees of the Hospital de Clinicas “José de San
Martin” from Ciudad Auténoma de Buenos Aires and all the
participants gave their written informed consent. An anonymized
database for pre and post intervention (6 and 12 months) instances
was constructed for the data mining study. All individuals
informed their age and gender and anthropometric measurements
(height, weight, and waist circumference), BMI and systolic
and diastolic blood pressure (SBP and DBP, respectively) were
determined by standardized protocols. Venous blood samples
were drawn of every individual, high-density lipoprotein
cholesterol (HDL-c), triglycerides (TG), fasting blood glucose
(FBG) and HbA1c were measured in serum using standardized
procedures [21]. Low-density lipoprotein cholesterol (LDL-C)
was calculated by the Friedewald equation. Blood anticoagulated
with EDTA K2 was used for mRNA extraction and IL-1f mRNA
expression analysis.

2. Notation

The subjects considered in the study required the same number
of repeated measures over time (noted as variable t at 0, 6 and
12 months from intervention). The different subjects were
grouped according to the variation over time of the IL-1f gene
expression (noted as variable r). With this notation, for example,
t(i,j) and r(i,j) represent the time point and the gene expression at
measurement number j for subject i, respectively.

3. Clustering methods
We used hard partitioning methods for quantitative features.
Clustering applications was performed after three sequential

definitions:
A) set of variables to be considered;
B) distance between different variable
observations defined in item A;
O) clustering algorithm that groups observations
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defined in item A according to the distance function defined in
item B.

A) The clustering objective was set on grouping subjects
according to the increase or decrease of gene expression,
therefore the algorithm considered two subjects as similar if the
corresponding slopes between time points are similar. For each
subject i, the variation of gene expression r between time points
j—1 and j is given by the following slope value:

"D j)i1))

Therefore, if each subject i has a set of J repeated measures
noted r(i), the same subject has a corresponding set of slopes
m(i) with J-1 values. These sets of slopes will be noted as slope
vectors. Thus, the slope vectors m(i) were used instead of using
the response vectors (i) for each subject i. Hence, the automatic
grouping relied on the distance between slopes.

B) Whenever it was applicable, two distance functions were
considered:

« the Euclidean distance [22], that adds the squared differences
of slopes and applies a square root to the results. For example,
for two subjects i and k the distance is computed as:

dE (m(i),m(K)=N(m(i,1)-m(k, 1)) +...+ (m(i,J-1)-m(k.J-1))?

 the Manhattan distance [23], that adds the absolute values of
the slope differences. For example, for two subjects i and k the
distance is calculated as follows:

d,, (m(i),m(k))=|m(i, )-m(l )| +...+|m(i.J-1)-m(k,J-1)|

C) Regarding the clustering methods, three alternatives were
applied

* K-Means (based on the Euclidean distance)

e Gaussian Kernel based K-Means (based on the Euclidean
distance)

* K-Medoids (based on the Manhattan distance)

These clustering methods are used to group individuals according
to their corresponding set of slopes m(i). Regarding the Kernel
function required for Kernel based K-Means, a Gaussian
kernel function was applied [10]. It must be pointed out that
the K-Means based algorithms apply exclusively the Euclidean
distance, whereas the K-Medoids algorithm allows the use of
other distance functions, such as the Manhattan distance. The
algorithms were applied using standard commands of R software.
Details on the clustering algorithms are available in Hastie et al.
[11]. In the sequel we will refer to clustering algorithms applied
to the individuals’ set of slopes as shape-based. For example,
K-Medoids applied to the slope vectors m(i) can be referred as
Shape-Based K-Medoids. More details on these procedures can
be found in Appendix C.

4. Statistical Inference

Once the data was grouped in clusters, statistical tests were
applied to the anthropometric and metabolic variables of the
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database, searching for group differences in BMI, HDL-c, TG,
LDL-c, FBG, HbAlc, Waist circumference, Age and number
of Metabolic Syndrome components [ncMS], according to the
Adult Treatment Panel IIT (ATPIII) guidelines [24]. To assess the
statistical significance of differences between and within groups
we performed non-parametric tests due to the small sample
size and unverifiable assumptions. Kruskal-Wallis test was
performed to assess the differences between groups [25], and
paired Wilcoxon test to assess the differences within groups [26].

Results

The database was analyzed and subjects with at least one missing
response value were excluded, due to the impossibility to attain
a slope set comparable with other subjects. After removal, a total
of 26 individuals remained for further research. The responses
were scaled prior to partitioning, thus, the mean gene expression
was subtracted and the result was divided by the corresponding
standard deviation [27]. Figure 1 shows the different groups
resulting from the applied clustering algorithms. The partitions
of the algorithms involving K-means (upper [a] and central [b]
panel of Figure 1), result in groups that are likely to mix stable
and highly variable gene expression trajectories. This effect can
be explained by the lack of robustness of the K-means algorithm.
Inspecting the results, K-Medoids clustering (lower panel [c] of
Figure 1) is preferred in this application based on the following
observations: subjects in Cluster 1 had an initial decrease and
a posterior increase, subjects in Cluster 2 showed an initial
increase and a posterior decrease, whereas subjects in Cluster
3 had a stable level of IL-1p expression throughout the study,
with small increases or decreases over time. Therefore, in the
following, the results of the K-Medoids will be shown since
the requirements of variation similarities are met. Furthermore,
although all clustering methods are subject to randomness, the
K-Medoids algorithm showed such robustness that running
several times the procedure yielded the same partition. For the
K-Medoids algorithm, it is worth mentioning that there was a
subject in Cluster 2 whose gene expression increased in both time
intervals and has been classified in this group due to the initial
increase, which is not present in other clusters, and therefore,
the algorithm located the subject in the most similar group. This
subject could be morphologically seen as an outlier, and perhaps
should have been classified in a separate group. However, a
single subject cluster does not allow a correct between-group
comparison. Given this clustering, a subsequent analysis was
performed in the remaining variables of the database. The main
results are given in Table 1. We found significant differences
across groups in waist circumference, BMI, HDL-c and TG; and
a tendency for LDL-c; but we did not find significant differences
in FBG and HbAlc (Table 1). This similarity across groups is
explained by the main objective of the original design of the study
in order to follow up on the T2D individuals: to attain a decrease
in HbA lc¢ levels for all the participants. Also, since the Kruskal-
Wallis detects differences between groups, further inspection of

the values of most variables suggest that this difference is mainly
observed in subjects from Cluster 1. Table 1 shows that subjects
in Cluster 1 presented a decrease in LDL-c, TG and increase in
HDL-c over time, whereas these values were stable for other
clusters. Also, BMI and waist circumference values for subjects
in Cluster 1 were smaller compared to those of the other clusters,
also suggesting healthier features for Cluster 1. In addition, the
Wilcoxon paired test was applied to all variables comparing
the values at the start and the end of the study. The Wilcoxon
test was not performed in ncMS and Age since the values do
not vary over time. The lowest p-values corresponded to Cluster
1, suggesting greater differences in key variables for subjects
in this group. Even if statistical significance was not achieved,
the p-value is close to 10%, which represents considerable
differences in the variables, given the small number of subjects
and that non-parametric tests generally provide less statistical
power. In addition, the p-values for Cluster 1 are considerably
lower than the values corresponding to other clusters, reinforcing
the observable difference between the evolutions of people from
different clusters. Although we found differences in age, none of
the variables analyzed showed a significant association with age
(data not shown).

5. Discussion

In the current application, the K-Medoids clustering method
using the Manhattan distance applied to the slopes attained
the best results concerning the main objective, which was
grouping subjects according to the variation in the response of
IL-1B expression and showing differential behaviour in clinical
variables. The other clustering algorithms considered in our
work ([11]), when applied to the slopes yielded heterogeneous
groups and therefore, did not meet the desired qualities for
such clustering. Similar results are shown when applied to
another controlled database in Appendix B. The use of the
slopes as the key features of the grouping, allows to generalize
previous proposals [20]. In this new framework, any traditional
clustering method can be applied to group subjects according to
variations in the response. Unlike the application of clustering
algorithms in the original data r(i), small distances between
the slope vectors m(i) provided similar characteristics in the
variation of gene expression. Therefore, the use of the slopes
expands the already vast world of clustering methods since
these algorithms can be applied in both settings, but yielding
different results. More details in Appendix A. The clustering
yielded three distinct groups, evidently differentiable when
clinically and biochemically compared in Table I. There were
significant differences in waist circumference and BMI between
the different clusters, so it would also be necessary to analyze the
contribution of obesity in the expression of IL-1f that allowed
these groups to be separated. Intra-cluster analysis showed that
in Cluster 1, although the proposed metabolic compensation goal
was reached, the decrease in FPG and HbA 1c did not reach
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Shape-based k-Means clustering
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Figure 1: IL-1p (2-2") expression over time, grouped according to the slopes between

time points using the three clustering algorithms described in Section 3.3: (a) K-Means (Upper panel), (b) Kernel K-Means (Center

panel) and (¢) K-Medoids (Lower panel).
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Table 1: Observed differences in quantitative variables of the dataset, separated by time measurement (at 0, 6 and 12 months).
The waist circumference results at 6 months were omitted due to a low proportion of observed data. m: median; IQR: interquartile
range; BMI: body mass index; HDL-c: high-density lipoprotein cholesterol; LDL-c:low-density lipoprotein cholesterol; TG:
triglycerides; HbAlc: glycated haemoglobin; FBG: fasting blood glucose; ncMS: number of Metabolic Syndrome components.

Cluster 1 Cluster 2 Cluster 3 P-value
Variable Time m (IQR) m (IQR) m (IQR) (Kruskal-Wallis)
Waist circumference 0 mo 100 (92-102) 104 (100-109) 112 (100-117)
(cm) 12 mo 100 (97-103) 106 (101-114) 111 (98-119) 0.0149
p-value (Wilcoxon) 0/12 mo 0.8922 1.0000 0.9056
0 mo 31.11 (29.22-31.42) 32.91(31.23-38.02)  34.02 (31.60-37.92)
BMI (kg/m?) 6 mo 29.68 (29.18-30.11) 33.57(29.56-38.22)  32.50(31.65-35.75) 0.0106
12 mo 30.48 (29.91-30.85) 33.28 (30.35-37.90)  32.80(28.19-33.85)
p-value (Wilcoxon) 0/12 mo 0.0544 0.0852 0.1358
0 mo 1.10(1.01-1.31) 1.09 (0.83-1.16) 1.01 (0.91-1.03)
HDL-c (mmol/L) 6 mo 1.22 (1.00-1.47) 1.06 (0.92-1.11) 1.05 (0.94-1.14) 0.0470
12 mo 1.32 (1.34-1.45) 1.11 (0.98-1.40) 1.09(0.98-1.11)
p-value (Wilcoxon) 0/12 mo 0.0544 0.0852 0.1358
0 mo 3.22(2.97-3.30) 3.00(2.22-3.08) 3.29(2.90-3.75)
LDL-¢ (mmol/L) 6 mo 3.19 (2.87-3.44) 2.56(2.37-2.97) 3.11 (2.82-4.40) 0.0718
12 mo 2.28 (2.22-2.38) 2.72(2.57-3.09) 3.13 (2.81-3.60)
p-value (Wilcoxon) 0/12 mo 0.1250 0.9453 0.8125
0 mo 1.46 (1.27-1.69) 2.06 (1.45-2.74) 1.51 (1.32-2.01)
TG (mmol/L) 6 mo 1.64 (0.97-1.88) 2.42 (2.09-3.20) 2.27(1.86-2.94) 0.0047
12 mo 0.93 (0.90-0.99) 2.19(1.67-2.72) 1.47 (1.32-2.75)
p-value (Wilcoxon) /12 mo 0.1250 1.0000 0.7597
0 mo 8.6 (8.0-10.1) 9.5(9.0-10.8) 8.1(7.9-11.2)
HbA (%) 6 mo 6.2 (6.1-6.4) 6.4 (5.9-6.9) 6.7 (5.8-7.2) 0.6652
12 mo 5.9(5.7-6.1) 6.1 (5.6-6.8) 6.2 (5.9-7.0)
p-value (Wilcoxon) 0/12 mo 0.0625 0.0039 0.0029
0 mo 8.69 (7.41-15.17) 8.16 (7.38-15.01) 8.77 (7.33-12.10)
FBG (mmol/L) 6 mo 5.91 (5.76-6.52) 5.94(5.27-6.97) 6.33 (5.83-7.89) 0.8086
12 mo 5.99 (5.83-6.22) 6.33 (5.61-6.66) 6.49 (6.27-7.44)
p-value (Wilcoxon) 0/12 mo 0.0625 0.0078 0.0322
ncMS 3 (2-4) 4 (3-4) 4 (3-5) 0.05907
Age (Years) 60 (57-62) 42 (39-52) 46 (40-58) 0.00423
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statistical significance. Also, a decrease trend in BMI and
metabolic improvements in HDL-c values were observed. In
Clusters 2 and 3, the compensation goal was reached as shown
by a significant decrease in HbAlc and FBG. In Cluster 2 we
also found a downward trend in BMI and HDL-c; but there
were no anthropometric or lipid variations in Cluster 3. These
results demonstrated that Cluster 3 showed the worst metabolic
profile. In subsequent studies, it would be interesting to evaluate
variables related to cardiovascular risk. Usually, non-parametric
tests are less powerful (prone to discard real differences as non-
significant) and the p-values can also be affected by the small
sample size [25]. Consequently, the standard significance level
of 5% can be too restrictive for this particular application of the
statistical tests and p-values which are higher but close to 5% were
considered for analysis. However, the strength of the obtained
results is enforced by the large time changes considering nutrition
and physical individual habits, and also by the time-varying
nature of the system under study. As future work, it would be
necessary to analyze a larger number of individuals to improve
the individualized model and to reinforce our conclusions. Most
clinical applications of gene clustering algorithms, which can be
phenotype-based or gene-based, do not consider the longitudinal
evolutions of gene expression. To the best of our knowledge, this
approach has not yet been addressed as a clinical application in
the literature. In the work of Pearson et al. [28], the consideration
of longitudinal evolution was focused on phenotype follow-up,
rather than gene expression and our work considered both gene
expression and phenotype over time. Further investigation could
profit from the use of all these perspectives to improve algorithm
performance. Furthermore, works of clinical application that
considered the longitudinal evolution of gene expression used
supervised learning algorithms, in which the outcome variable
was known and used for further predictions [29-33]. The
methodology presented in this work involves unsupervised
learning and can be applied when this prior knowledge is absent
or limited, and new associations are required. Also, since most
available gene expression data comes from countries with strong
European ancestry, further research could provide data from
other countries that can enrich precision medicine, based on
more diverse data sources [34]. Our work used hard partitioning
to automatically group individuals from the study. Many other
works focused on the use of soft clustering, which is preferred
for big data [35]. However, in small studies like ours, with
patients undergoing large time treatments, the groups should
be well-defined in order to achieve an adequate between-group
comparison. A possible extension of this work could be the
application of soft clustering to the slopes in longitudinal studies
with a great number of subjects, allowing the determination
of larger groups according to a strong association. One of the
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advantages of the proposed data mining procedure is that it does
not require time measurements to be equal among all individuals,
which is a frequent imposition for similar algorithms. However,
in this study, the measurements were taken with the same
protocol for every subject and do not differ with great impact
in the calculations, and the algorithm easily adapts to these
situations. Furthermore, the algorithm is not restricted to gene
expression and performs well in other applications, or in cases in
which other methods are not recommended, with few time points
in which there is no prior knowledge regarding the observed
phenomenon, which is a frequent issue in case studies observed
in clinical investigation. Also, it is important to remark that this
lack of prior knowledge allows us to search for associations
between variables that are not previously thought to be linked.
However, it must be pointed out that any prior knowledge
regarding the application can be used to improve the algorithm,
allowing the selection of specific distances between slopes.
Since the presented database does not have a massive number
of observations, the computational cost of K-Medoids was a
drawback without major consequences. However, in other types
of databases as massive databases, K-Means or Kernel-based
K-means can be a better option. Another issue worth mentioning
is that the proposed method is analytical and should not be
used as a statistical inference tool. Any result obtained with the
method should be further tested in a controlled experiment with
a bigger sample size in order to attain satisfactory and pertinent
inferences.

Conclusions

Our study showed that clustering individuals according to the
variation in gene expression enabled us to find important clinical
features that could allow the identification of differentially
grouped metabolic behaviors not attained by other data analysis.
With further studies, this could be translated into clinical
improvement management of each individual considering the
group assignment. The achieved results show that the proposed
approach can significantly improve predictive performance and is
effective when other established methods are not recommended
due to the nature of the data, such as small sample sizes, few
timepoints, heterogeneity and abrupt changes in gene expression
for different timepoints. T2D is a complex and heterogeneous
disease. Therefore, identifying clusters with similar clinical
phenotype, will allow health professionals to evaluate increased
risk, assess clinical evolutions and apply specific and personalized
treatment to these groups of individuals. Precision medicine can
improve the quality of life of people with T2D and help them
improve glycemic control, prevent complications and provide a
better quality of life.
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CONSTRUCTION OF THE SLOPE SPACE

Selecting a simmilarity measure for a specific problem is a challenging task, due to the vast number of
choices. Since this work is focused on grouping subjects according to the increase or decrease of a certain
response variable, the euclidean distance between vectors may fail to recognize differences in the variation.
A clear example of this problem is shown in Figure 1:
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(a) (b)
FIGURE 1. (a) Simulated response trajectories of 4 subjects at 3 time points. (b) Repre-
sentation of these trajectories en the slope space.

In Figure 1 (a), the responses for subjects 1 and 2 are close to each other at different times, yielding
a small euclidean distance between both vectors r; and r7,. The same feature can be observed between
subjects 3 and 4. Conversely, the euclidean distance, does not consider subjects 1 and 3 as similar, as well
as subjects 2 and 4. However, based on the variation of the response, the proposed distance should qualify
subjects 1 and 3 as similar, the same should occur between subjects 2 and 4.

To address this issue, a natural distance is considering that to subjects are similar if the slopes between
timepoints are similar. For example, according to the previous notations, for subject ¢, the variation of
the response variable r between timepoint j and j + 1 is given by the following slope value:

Tij — Tij—1
@ M tij —tij—1

Under this construction, negative and positive slopes will correspond to decreases and increases in the
response variable, respectively. On this basis, it may seem natural to group individuals according to the
slope sign in the same instance. However, this classification omits the magnitude of the slope. If two
subjects have slopes of different signs, but similar absolute value, these response trajectories reflect certain
stability, and thus, are not qualitatively different.

Figure 1 (b) shows clearly that the slope space meets the goal of reducing the distance between subjects
1 and 3, as well as subjects 2 and 4. Furthermore, the figure shows how dividing observations by quadrants
fails to assess the qualitative features of a trajectory, since subjects 1 and 3 belong to different quadrants but
both correspond to stable trajectories in time and should belong to the same group. Grouping observations
according to the distance in the slope space achieve this feature.

The resulting slope space yields a new set of quantitative values per individual, and the clustering
methods detailed in the manuscript can be applied in this setting. For example, response trajectories
ri = (rio,Tix, -+ ,7ig) and individual timepoints ¢; = (¢;0,t;1,- -+ ,t;,7) have J+1 real valued coordinates,
whereas m; = (m;1,Mi2, -+, M) € R”7. Therefore, traditional distances for numeric vectors can be

applied to the vector of slopes. For example, the distance between subject ¢ and ¢’ (with responses r; ; and
1
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ry j at times t; j and t; j, respectively) can be expressed by the euclidean distance between the corresponding
slopes m; ; and my ;:

J
(2) [[mi — myl|z =

J 2
2 Tig —Tig—1 _ Tig — V-1
(miy —mig)* = | > ( -
1

: o \lig —tigor ey —tiga

J

The K-means algorithm is based on the euclidean distance, and thus is frequently used in practice.
However, other distances for quantitative vectors can be used, for example, the manhattan distance, based

on the absolute value of the differences:
J J

(3) [[mi = mal[y = |miy —mag] =

j=1 j=1

Tig —Tig-1 Ty —Tirj-1

tij —tig-1  tig—tij-

This distance is less susceptible to outliers, and can be used in both Hierarchal and K-Medoids algorithms,
increasing the number of optional metrics beyond the Euclidean distance.

Unlike the application of these distances in the original data r;, small distances in the slope space
vectors m; ensure similar characteristics in the response variation. Furthermore, any clustering method
applied to the slope space succeeds to capture these features in a greater measure than the same clustering
method applied to the trajectories. Therefore, the use of the slope space expands the already vast world
of clustering methods since it can be applied in both settings, but yielding different results.

Figure 1: Appendix A
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1. GROWTH MIXTURE MODELS

A different approach is to propose a model for the temporal evolution of the responses and a specified
number K of unknown classes (the procedure is also called Latent Class Mixed Models [2[,[1] ). The model
is usually polynomial with mixed effects for each group:

Zh_ W) gh e,
(1) ’] (k) (7k
o, =
where each ), is a fixed effect per group and each 7 ; is an individual random effect.

Once the model is specified, the parameters are fitted by Maximum Likelihood and a posterior group
classification of each observation is performed based on the estimated parameters. This classification yields
K groups that can also be seen as a clustering or partition.

This approach has been proven useful for slowly changing trends. However, the model needs to be
previously specified (requiring prior information which is not always available) and the model is not always
clear, specially for data with small sample sizes. Furthermore, whenever the changes in temporal trends
are abrupt, the estimated coefficients are greatly affected by these variations, influencing the entire fitted
trajectory.

To avoid this drawback, the trends can be modeled with polynomial splines per group, diminishing the
influence of poorly estimated coefficients. However, the timepoints used as knots are not always explicit
and must be determined adding a new difficulty.

2. CLUSTERING QUALITY MEASURES

Given an automatic clustering, it is not always clear how to evaluate the quality of the partition. The
aforementioned diversity in clustering problems and objectives lead to several different indices, but these
measures can be qualified in two groups: internal and external criteria.

Internal criteria are used to evaluate desirable qualities of a clustering, such as high between-cluster
variability (or separability) and low within-cluster variability (or homogeneity), without a reference group-
ing. On the other hand, external criteria require two partitions and do not focus on the properties of the
clusterings, they assess the similarity between two different groupings. In this work, only external criteria
are addressed since the aim of the experiments is set on identifying a partition given as reference.

2.0.1. FExternal criteria. Measuring agreement between clustering partitions is not as simple as matching
the number of objects belonging to a certain clusters, mainly because most clustering algorithms have an
initial random assignment. For example, running K-means twice on the same data, can lead to the same
clustering, but with different labels given as an output.

To overcome this drawback, given a database of n individuals, most external criteria focus on the @
different pairings of the data observations. If two observations x; and z; are grouped in the same cluster
in one partition, the other partition will agree with this result if x; and x; are also in the same cluster,
regardless of the cluster labels. Also, if two observations belong to different clusters in one partition, the
other partition should also be assigned to different groups.

According to the notation used in the literature [4], given two partitions P; and P, for a dataset of n

observations, and its corresponding np = "("7 pairings, the following numbers are computed:

e yy pairs of observations grouped in the same cluster in both partitions.
e yn pairs of observations grouped in the same cluster in P;, but not in Ps.
e ny pairs of observations grouped in different clusters in Py, but not in Ps.

e nn pairs of observations grouped in different clusters in both partitions.
1

eJIFCC2023Vol34No3pp228-244




L. Pantazis, R. Garcia, G. Frechtel, G. Cerrone, A. Molli

We remark that these notations do not require clusters to have the same label. Furthermore, the number
of clusters of each partition can be different. In all cases, the sum of these four numbers add to the number
of pairings np.

Based on these definitions, there are several criteria that can be applied to compare different partitions.
This work relies on the following criteria:

. . vy 2

e Precision (P): Cp = e Czekanowski-Dice (CD): Cep = . L

yyy‘?fj ny 2yy + yn + ny
e Recall (RC): Cr. = T un e Folkes-Mallows (FM): Cpp = vy

oo+ o V(yy +yn) - (yy + ny)
e Rand (RN): Cg, = . 1 Yy vy

np e Kulczynski (K): Ox = - - +
_ vy 2 \yy+ny wyy+uyn
e Jaccard (J): Cj = —————— yy +nn
yy +yn+ny e Rogers-Tanimoto (RGT): Crgr =
yy +nn + 2(yn + ny)

It is worth mentioning that all these criteria correspond a higher index with a greater agreement between
partitions. Furthermore, note that in the best case scenario, both yn and ny are zero, and all these indices
have a maximum value of 1.

These criteria are very useful whenever there is a reference partition and the goal is to assess the
agreement of an automatic partition to the reference grouping.

3. BENCHMARK DATABASE

The variation-based clustering algorithms are tested in a longitudinal benchmark database, in which the
subjects are naturally grouped. The main goal is to cluster automatically the trajectories according only
to the variation in the response, and compare the results to the reference grouping via external criteria.

TLC Data. The Treatment of Lead-Exposed Children (TLC) trial (|3]) is a randomized study that analyses
the effects of a drug named succimer in children with similar blood lead levels. These data consist of four
repeated measurements of blood lead levels obtained at baseline (or week 0), week 1, week 4, and week 6
on 100 children, randomly assigned to treatment with succimer or placebo.

Placebo Succimer

60 4

404

20 1

Blood lead level [mg/dL]

Time [weeks]

FIGURE 1. Response trajectories for subjects in the TLC study,

As the response trajectories in Figure 1 show, the blood lead levels are stable in the placebo group and
there is a strong decrease in blood lead levels in the succimer group during the first week, but an increase
in the remain of the study. Therefore, the slopes in the placebo group are expected to be close to zero.

2
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On the other hand, the slopes in the succimer group are expected to be negative in the first instance, and
relatively stable after the first week.

3.1. Results . Figure 2 reflects the quality indices for the different clustering methods described in the
manuscript, and adding Latent Class Mixture Models applied to the TLC data. Following Figure 1, a linear
spline model is considered with a knot in the timepoint corresponding to the first week. Also, Kernel-based
K-Means is included with an automatic selection of parameter o.

s
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T TN # =5 _ ;"
(I 1 . ,_,f-—'i W\ . /C;
< 0.7 1 I i‘_\_ Y / A~ N ¥ ) f
[} \ \ gy / \ \ \/ /
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\ \ j
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051 ; : I ! L l |
cc M K P RC RGT AN
Criteria
&~  KerkMeans —— kMeans —4— kMeds(E) —#— kMeds(M) —#— LCMM

FIGURE 2. Mean indices for the TLC data

The k-Medoids algorithm using the Manhattan distance yields the best performance. Another detail
worth mentioning is that even though for each method M = 100 repetitions were conducted, the indices re-
main unaffected and converge to the same partition, except for the Kernel-based k-Means. Therefore, there
is a null standard error in almost all cases. The standard error for Kernel-based k-Means is considerable
and can be explained by the sensitivity of this method to initialization and outliers.
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1. CLUSTERING METHODS

The objective of clustering methods is to group observations (in this case, the response trajectories r;)
according to some measure of similarity, or conversely, separating observations according to dissimilarity.
The concept of similarity (or dissimilarity) is vague and can be applied to categorical or quantitative
features (and transformed features), for different similarity measures, kernels, and even stablishing degrees
of association between an individual and a group, leading to an immense number of options. The selection
of these features is deeply related to the application area and the research objective.

This work focuses on crisp partitioning methods for quantitative features. The advantage of grouping
quantitative values methods is that they can be based on distance measures for vectors, such as the
Euclidean distance.

In the sequel and unless otherwise specified, the observations are noted as x; € R™, with 1 < i < n.
The clusters corresponding to a certain partition are noted Cy (1 < k < K), where K < n, each with ng
elements, and an average value noted py = é . Zmieck ;. The number n; of observations in each cluster

satisfy n = Zszl Nk

In this work we focus on five clustering methods with corresponding variations: K-Means, Hierarchal
clustering (Single, Average and Complete methods) and K-Medoids (using Manhattan and Euclidean dis-
tance), Kernel-based k-Means (Radial Kernel) and Latent Class Mixed Models.

Details regarding the used clustering methods are available in Hastie, Tibshirani & Friedman [18] and
Wierzchon & Klopotek [26].

1.1. K-Means . K-Means is the most popular clustering method, mostly due to the low computational
complexity of the algorithm and its performance in big data.

The main goal of the algorithm is to assign objects to clusters in order to minimize the within-group
variance of the partition, and thus, based on the euclidean distance between vectors. However, this
optimization problem is NP-hard. Therefore, a heuristic approach is implemented iteritavely searching
for a local minimum.

The algorithm requires a number of clusters K. In the first step, observations are randomly assigned to
K groups. Within each group 1 < k < K, the group mean g € R™ is calculated. After this computation,
each observation z; is assinged to the group k, where py is the closest group mean to x;. The mean
computation and further assingment is iterated until the resulting groups remain unchanged.

The major disadvantage to this algorithm is the lack of robustness to outliers of the calculated group
mean, and to the initial group assignment. Also, the algorithm requires the number K of clusters and in
practice, it can be very difficult to know in advance the number of groups.

1.2. K-Medoids . An alternative to K-Means is the K-Medoids algorithm. This algorithm is more robust
to outliers and initialization than K-means, since it relies on observations of the database as group centers,
instead of group averages.

However, the robustness comes with a cost of increased computation complexity. Therefore, this algo-
rithm can preform very well when the number of observations are not massive.

The algorithm starts selecting K random observations as cluster representatives, and assigns the re-
maining n — K observations to the closest center. Once the clusters are assigned, each cluster center is
updated to the observation that minimizes the within-group distance, iterating until cluster assignation
does not change.

1.3. Kernel-based K-Means . Kernel-based K-Means is a usual alternative when the observations are
not linearly separable. In order to increase separability, a non-linear transformation & is applied to the

data and the same K-Means algorithm described in Section 1.1 to the transformed data.
1
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One of the most popular kernels is the Gaussian Kernel or Radial Basis Function:
i — |
(1) IC(ZI?i,ZEi/) =€ 202

where ¢ is a parameter defined by the user.

The use of kernels flexibilizes the use of K-Means. However, this extension does not modify the previous
drawbacks: the algorithm is very sensitive to outliers and initialization. Furthermore, the inclusion of
parameter o adds a new issue: the results can be qualitatively different when the parameter values are
modified.

1.4. Algorithm. Algorithm 1 describes the pseudocode for the structure of the algorithm. Only subjects
with complete responses and time variables necessary to calculate the slope are included in the clustering
algorithm. For these remaining subjects, the vector of slopes is attained and a clustering algorithm is
performed. It must be pointed out that any distance function or clustering method can be applied at this
point in the algorithm, yielding a great versatility for this approach.

Algorithm 1 Shape-based Clustering of Longitudinal data

procedure SHAPE-BASED CLUSTERING (Data, Resp, Time, J, ID)
NetData <FilterMissingData(Data, Resp, Time, I D)
IDs < UniquelD(Data, ID)

NumlIDs < Length(IDs)
141
IDsComp + 0
m <0
loop1:
while ¢ < NumlIDs do
IndData < SelectID(Datos, IDs(1))
IndResp < SelectResponse(IndData, Resp)
IndTime < SelectTime(IndData, Time)
if Length(IndResp) = J + 1 and Length(IndTime) = J + 1 then
IDsComp « Append(IDs(i), I DsComp)
MAyz < (Z)
j<1
loop2:
while j < J do
oaa() ;ndResp(j +1)— Inth?sp(j?
ndTime(j + 1) — IndTime(j)
j—j+1
go to loop2.

m < RowBind(m, m sy, )
141+ 1.
go to loopl.

AssignClusts <— ClusteringAlgorithm(m,)
Results < RowBind(IDsComp, AsignClusts)
return Results
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