Research Article Correlation Analysis of Direct LDL Measurement and Calculated LDL Methods in Lipid Profile Assessment: A Comprehensive Study

M. Rasheed Khan¹, K. Durga Sowmithri², Arafeen Shazia³, Mohammad Nawaz^{*4}, Raksha Khaveyya P. K.⁵, B. Parkavi⁶

¹Associate Professor, Department of Biochemistry, Srinivasan Medical College & Hospital, Dhanalakshmi Srinivasan University, Tamil Nadu, India

²Department of Biochemistry, Srinivasan Medical College and Hospital, Dhanalakshmi Srinivasan University, Tamil Nadu, India ³Department of Biochemistry, Hind Institute of Medical Sciences, Safedabad, Uttar Pradesh, India

*Department of Bioenemistry, find instance of incurcat sciences, sujeauoua, offar francish, in

*4Department of Physiology, Integral Institute of Medical Sciences, Uttar Pradesh, India

^sDepartment of Community Medicine, Melmaruvathur Adhiparasakthi Institute of Medical Sciences, Melmaruvathur, Tamil Nadu, India ⁶Department of Biochemistry, Srinivasan Medical College and Hospital, Dhanalakshmi Srinivasan University, Tamil Nadu, India.

Article Info

Author of correspondence:

Mohammad Nawaz, MD Physiology, Associate professor, Integral Institute of Medical Sciences and research E-mail: <u>mohammadnawaz324@gmail.com</u> Tel.: 9027051398 Address: *IIMSR Lucknow Uttar Pradesh*

Abstract

Introduction

Assessing LDL cholesterol is pivotal for cardiovascular risk evaluation. While direct LDL measurement is accurate, calculated LDL methods offer practicality and costeffectiveness. This study aims to evaluate the correlation between direct LDL measurement and various calculated LDL methods, shedding light on their clinical utility.

Methods

A retrospective analysis of lipid profiles from 1075 patients was conducted, encompassing direct LDL measurement and calculation of LDL using nine different methods. Statistical analyses, including correlation coefficients and scatter plots, were employed to assess the agreement between direct LDL and calculated LDL methods.

Results

Surprisingly, all calculated LDL methods exhibited a robust correlation with direct LDL measurement across the study cohort. The Friedewald equation, as well as modified equations demonstrated particularly robust correlations. These findings indicate the reliability of calculated LDL methods in estimating LDL cholesterol levels.

Discussion

The significant correlation observed between direct LDL measurement and calculated LDL methods underscores the clinical utility of the latter. While direct LDL measurement remains the gold standard, calculated LDL methods offer practical advantages, particularly in resource-limited settings.

Conclusion

In conclusion, this study highlights the excellent correlation between direct LDL measurement and calculated LDL methods in lipid profile assessment. Clinicians can leverage calculated LDL methods as reliable alternatives for LDL

Keywords

LDL-cholesterol, Freidewald equation, various modified formulae, Vujovic

cholesterol estimation, facilitating efficient cardiovascular risk evaluation in routine clinical practice. Further research may explore the optimal use of calculated LDL methods in specific patient populations, enhancing their clinical applicability and utility.

Introduction

One among the leading cause of mortality worldwide are cardiovascular diseases. Low density lipoprotein (LDL) are considered bad cholesterol as it causes atherosclerosis, an utmost contributor to cardiovascular disease [1]. Low-density lipoprotein-cholesterol (LDL-C) remains of utmost clinical importance; it is positioned in clinical trials as a treatment target and is emphasized in worldwide guidelines as the primary cholesterol target [2]. It is mainly due to economic reasons, instead of the direct measurement of LDL-C, the calculation methods are widely used in clinical laboratories particularly in developing countries [3]. In addition to Friedewald Formula, there are several other formulas for calculation of LDL-C such as Chen, de Cordova, Vujovic, Anandaraja, Hattori, Ahmadi, Puavillai, Sampson's equation, Martin-Hopkins, Saiedullah; Planella and Wagner which have not been validated in varied populations [4-15].

Friedwald, the most commonly used formula has its own limitations as shown by earlier studies [16,17]. Over and under estimation of LDL-C in patients suffering from diabetes mellitus, alcoholic liver disease, and chronic liver failure have been seen by many [18-21], which may become a problem to patients. This can be overcome by establishing a formula for our population for which we conducted the following study.

9 different formulas as shown in Table 1. were used along with direct LDL measurement

Proposed by	Formula
Friedewald et al., [4]	$LDL-C = TC - HDL-C - 0.2 \times TG$
Ahmadi et al., (5)	LDL-C = TC/1.19 + TG/1.9-HDL-C/1.1
Anandaraja et al., [6]	LDL-C = $(0.9 \times TC) - (0.9 \times TG/5) - 28$
Chen et al., (7)	$LDL-C = (TC - HDL-C) \times 0.9 - (TG \times 0.1)$
Cordova and Cordova [8]	LDL-C = 3/4 (TC-HDLc)
Hattori et al., [9]	LDL-C = $(0.94 \times TC) - (0.94 \times HDL-C) - (0.19 \times TG)$
Puavillai et al., [10]	LDL-C=TC-HDLc-TG/6
Sampson's equation (3)	LDL-C = $[TC/0.948 - HDL - C/0.971 - (TG/8.56 + TG \times non - HDL - C/2140 - TG^2/16100) - 9.44^{25}]$
Vujovic et al., [11]	LDL-C=TC-TG/6.85-HDLc

Table 1: 9 different formulas as shown in this table were used along with direct LDL measurement.

Materials and methods

A retrospective analysis of lipid profiles from 1078 patients was conducted from clinical biochemistry lab database at SMCH, Trichy for 6 months encompassing direct LDL measurement and calculation of LDL using nine different methods. Institutional ethical committee clearance was obtained (IEC No. 18/2022). Care was taken to anonymised the patients except for age & gender. All patients who came for complete lipid profile investigation were included

A total of 1075 patients out of 1078 were subdivided into various groups for further analyses based on **age, triglyceride (TG), total cholesterol (TC) & HDL- cholesterol (HDL-C) levels** as in Tables 2-5.

1 00	No (% ago)	Moon Ago + SD	Mean TC	Mean TG	Mean HDL	Mean D-LDL
Age No. (70 age)		Wiean Age ± 5D	(mmol/L) ± SD	(mmol/L) ± SD	(mmol/L) ± SD	$(mmol/L) \pm SD$
< 20	14 (1.3)	13.79 ± 3.53	3.81 ± 1.05	1.33 ± 0.85	1.12 ± 0.22	2.41 ± 1.02
20-39	200 (18.6)	32.02 ± 5.39	4.55 ± 1.18	1.64 ± 0.82	1.15 ± 0.29	3.01 ± 1.02
40-59	541 (50.3)	49.81 ± 5.43	4.70 ± 1.12	1.74 ± 0.78	1.20 ± 0.68	3.12 ± 1.02
>=60	320 (29.8)	67.20 ± 6.38	4.52 ± 1.06	1.58 ± 0.72	1.14 ± 0.28	2.98 ± 0.95

Table 2: Four groups based on age (<20, 20–39, 40–59 and \geq 60 years).

TG	N_{2} (9/ 272)	Maan Aga SD	Mean TC	Mean TG	Mean HDL	Mean D-LDL
mmol/L	INO. (% age)	Mean Age ± 5D	$(mmol/L) \pm SD$	$(mmol/L) \pm SD$	$(mmol/L) \pm SD$	$(mmol/L) \pm SD$
< 0.56	15 (1.4)	42.27 ± 21.22	3.22 ± 0.86	0.48 ± 0.09	1.18 ± 0.28	2.05 ± 0.67
0.56-1.69	630(58.6)	51.41 ± 14.15	4.42 ± 1.06	1.19 ± 0.30	1.22 ± 0.57	2.95 ± 1.00
1.70-3.38	376 (35)	51.53 ± 13.50	4.91 ± 1.08	2.23 ± 0.42	1.11 ± 0.46	3.24 ± 0.96
3.39-4.51	54 (50.2)	48.78 ± 12.89	5.20 ± 1.21	3.77 ± 0.25	1.03 ± 0.27	3.08 ± 1.12
> 4.51	3	Data excluded due	to insufficiency			

Table 3: Five levels of TG (<0.56, 0.56–1.69, 1.70–3.38, 3.39–4.51 and > 4.51 mmol/L).

Table 4: Three levels of TC (<5.17, 5.17–6.18, >6.18 mmol/L).

TC	No $(9/200)$	Mean Age + SD	Mean TC	Mean TG	Mean HDL	Mean D-LDL
mmol/L	10. (76 age)	Mean Age ± SD	$(mmol/L) \pm SD$	$nmol/L) \pm SD (mmol/L) \pm SD$		$(mmol/L) \pm SD$
< 5.17	750 (69.8)	51.03 ± 14.62	4.06 ± 0.77	1.55 ± 0.72	1.13 ± 0.60	2.63 ± 0.77
5.17-6.18	244 (22.7)	52.08 ± 12.60	5.58 ± 0.30	1.89 ± 0.80	1.24 ± 0.28	3.77 ± 0.63
> 6.18	81 (7.5)	50.02 ± 12.16	6.81 ± 0.63	2.16 ± 0.87	1.34 ± 0.25	4.75 ± 0.82

Table 5: Three levels of HDLC (<1.03, 1.03–1.52, >1.52 mmol/L).

HDL	No. (9/ ago)	Maan Aga + SD	Mean TC	Mean TG	Mean HDL	Mean D-LDL
mmol/L	10. (76age)	Mean Age ± SD	$(mmol/L) \pm SD$	$(mmol/L) \pm SD$	$(mmol/L) \pm SD$	(mmol/L)± SD
< 1.03	340 (31.6)	51.24 ± 14.93	4.05 ± 1.06	1.86 ± 0.81	0.86 ± 0.15	2.75 ± 1.00
1.03-1.52	635 (59.1)	51.37 ± 13.74	4.82 ± 1.01	1.62 ± 0.75	1.22 ± 0.13	3.16 ± 0.95
>1.52	100 (9.3)	49.93 ± 12.52	5.21 ± 1.18	1.37 ± 0.65	1.92 ± 1.37	3.32 ± 1.12

Venous blood samples (3ml) of subjects under strict overnight fasting [8-10hrs] was collected under aseptic precautions. After serum separation immediate analysis of serum lipid profile including direct LDL was done.

Statistical analysis

Statistical analyses, including correlation coefficients and scatter plots, were employed to assess the agreement between direct LDL and calculated LDL methods using SPSS Software version 27.0 and Excel sheet

Mean and standard deviation was used to convey the data.

The data was more thoroughly analysed using Pearson's correlation, Bland-Altman plots and paired t-test was also utilise to compare means of different groups.

Pearson's correlation 'r' near to 1 and p < 0.05 was taken as significant

Bland-Altman plots (Figure 1) were used to see the agreement or disagreement between two different methods

Two tailed p-value <0.05 was taken as significant

Conversion of TG in mg/dl to mmol/L was done using TG in (mg/dl) /88.57 and for TC, HDL-C and LDL-C values in mg/dl were divided by 38.67

Results

A total of 1075 patients of which 50.5% (543) were females and 49.5% (532) were males with mean age group of 51.19 \pm 14.01 years were included. Table 6 shows demographic and lipid data of studied population with mean \pm SD, mean difference, p value of paired t-test and r and p of Pearson correlation serving to compare and correlate different formulae

Lowest bias 0.16 is shown by Vujovic formula with lower limit being -1.3 and upper limit being 1.63. The Bland Altmann plot (Figure 1). indicates high level of agreement between Vujovic formula and Direct measurement of LDL. The small bias and narrow limits of agreement suggest that the two methods can be used interchangeably without significant concern for clinical differences. Highest mean difference is shown by Ahmadi formula which means there is small but consistent bias.

Bland Altmann plots to look for bias and agreement between Direct-LDL and calculated-LDL's

Moderate to strong relation of 0.554 - 0.796 was observed between various calculated formulae with direct LDL (Figure 2).

Correlation of various calculated formulae with direct LDL

As shown in Table 6, Surprisingly, all calculated LDL methods exhibited a strong correlation with direct LDL measurement across the study cohort. The Friedewald equation, as well as modified equations incorporating non-HDL cholesterol or apolipoprotein B, demonstrated particularly robust correlations. These findings indicate the reliability of calculated LDL methods in estimating LDL cholesterol levels. However, the mean of calculated LDL-C by all equations showed significant mean difference with directly measured LDL-C in which least mean difference (LMD) was shown by Vujovic formula and best correlation shown by Anandaraja formula

Variable	Mean ± SD	Mean difference	t-test (Vs Direct- LDL C)	Person correlation	
				r	Р
Age	51.19 ± 14.01				
Sex	532 males 543 females				
Total cholesterol (mmol/L)	4.61 ± 1.12				
Triglycerides (mmol/L)	1.67 ± 0.78				
HDL-C (mmol/L)	1.17 ± 0.52				
Direct LDL-C (mmol/L)	3.05 ± 1.00				
Comparative analysis of LDL-C by nine	formula		·	·	•
Ahmadi LDL-C	4.83 ± 1.56	-1.78	<0.001	0.554**	<0.001
Anandaraja LDL-C	2.74 ± 0.96	0.31	<0.001	0.796**	<0.001
Chen LDL-C	2.71 ± 0.97	0.33	<0.001	0.747**	<0.001
de Cordova LDL-C	2.59 ± 0.85	0.46	<0.001	0.742**	<0.001
Friedewald LDL-C	2.68 ± 1.06	0.37	<0.001	0.733**	<0.001
Hattori LDL-C	2.51 ± 1.00	0.54	<0.001	0.733**	<0.001
Puavillai LDL-C	4.08 ± 1.27	-1.03	<0.001	0.704**	<0.001
Sampson's LDL-C	2.76 ± 1.05	0.29	<0.001	0.745**	<0.001
Vujovic LDL-C	2.88 ± 1.07	0.16	<0.001	0.743**	<0.001

Table 6: Demographic distribution and lipid data of the study subjects.

SD: Standard deviation; r=Correlation Coefficient; p<0.05 considered statistically significant

Estimation of LDL-C in 4 subgroups based on Age (Table 7). There were four subgroups based on age (Group 1 = <20, Group 2 = 20-39, Group 3 = 40-59 and Group $4 = \ge 60$ years). in which Ahmadi and Puavillai formulae overestimated LDL values whereas all other formulae underestimated LDL values than Direct-LDL value in all age sub-groups. LMD & good correlation was shown by Vujovic formula in all subgroups

Variable	Mean ± SD	Mean	t-test (Vs Direct-	Person corre	lation
		uniterence	LDL C)	r	Р
Age	Group 1: Age = <2	0 (years), (n= 14	b)	,	
Direct LDL-C	2.41 ± 1.02				
Ahmadi LDL-C	3.79 ± 1.56	-1.38	0.002	0.547*	0.043
Anandaraja LDL-C	2.16 ± 0.92	0.25	0.049	0.904**	<0.001
Chen LDL-C	2.12 ± 0.81	0.29	0.011	0.943**	<0.001
de Cordova LDL-C	2.02 ± 0.73	0.39	0.009	0.902**	<0.001
Friedewald LDL-C	2.08 ± 0.88	0.33	0.004	0.941**	<0.001
Hattori LDL-C	1.95 ± 0.83	0.46	<0.001	0.940**	<0.001
Puavillai LDL-C	3.20 ± 1.14	-0.79	0.001	0.799**	0.001
Sampson's LDL-C	2.14 ± 0.89	0.27	0.010	0.944**	<0.001
Vujovic LDL-C	2.25 ± 0.89	0.16	0.092	0.946**	<0.001
	Group 2: Age = 20 -	-39 (years), (n=	200)		
Direct LDL-C	3.01 ± 1.02				
Ahmadi LDL-C	4.77 ± 1.64	-1.76	<0.001	0.585**	<0.001
Anandaraja LDL-C	2.70 ± 0.99	0.31	<0.001	0.734**	<0.001
Chen LDL-C	2.69 ± 0.94	0.32	<0.001	0.770**	<0.001
de Cordova LDL-C	2.56 ± 0.84	0.45	<0.001	0.764**	<0.001
Friedewald LDL-C	2.65 ± 1.01	0.36	<0.001	0.754**	<0.001
Hattori LDL-C	2.49 ± 0.95	0.52	<0.001	0.753**	<0.001
Puavillai LDL-C	4.03 ± 1.29	-1.03	<0.001	0.724**	<0.001
Sampson's LDL-C	2.73 ± 1.01	0.28	<0.001	0.767**	<0.001
Vujovic LDL-C	2.86 ± 1.03	0.15	<0.001	0.766**	<0.001
	Group 3: Age = 40-	-59 (years), (n=	541)		
Direct LDL-C	3.12 ± 1.02				
Ahmadi LDL-C	4.97 ± 1.57	-1.85	<0.001	0.510**	<0.001
Anandaraja LDL-C	2.79 ± 0.99	0.33	<0.001	0.804**	<0.001
Chen LDL-C	2.76 ± 1.06	0.37	<0.001	0.699**	<0.001
de Cordova LDL-C	2.64 ± 0.91	0.49	<0.001	0.696**	<0.001
Friedewald LDL-C	2.71 ± 1.18	0.42	<0.001	0.687**	<0.001
Hattori LDL-C	2.54 ± 1.10	0.59	<0.001	0.687**	<0.001
Puavillai LDL-C	4.17 ± 1.32	-1.05	<0.001	0.663**	<0.001
Sampson's LDL-C	2.80 ± 1.15	0.32	<0.001	0.698**	<0.001
Vujovic LDL-C	2.92 ± 1.17	0.20	<0.001	0.696**	<0.001
	Group 4: Age = >=	60 (years), (n= 3	320)		
Direct LDL-C	2.97 ± 0.95				
Ahmadi LDL-C	4.67 ± 1.45	-1.70	<0.001	0.600**	<0.001
Anandaraja LDL-C	2.70 ± 0.88	0.28	<0.001	0.815**	<0.001
Chen LDL-C	2.68 ± 0.82	0.29	<0.001	0.836**	<0.001
de Cordova LDL-C	2.54 ± 0.74	0.43	<0.001	0.819**	<0.001
Friedewald LDL-C	2.66 ± 0.88	0.31	<0.001	0.830**	<0.001
Hattori LDL-C	2.49 ± 0.83	0.48	<0.001	0.829**	<0.001

Table 7: Distribution of calculated LDL-C in age groups <20 years, 20-39 years, 40-59 years, >=60 years.

Puavillai LDL-C	3.99 ± 1.14	-1.02	<0.001	0.763**	<0.001
Sampson's LDL-C	$\textbf{2.74} \pm \textbf{0.88}$	0.24	<0.001	0.836**	<0.001
Vujovic LDL-C	$\textbf{2.86} \pm \textbf{0.90}$	0.11	<0.001	0.836**	<0.001

SD: Standard deviation; r=Correlation Coefficient; p<0.05 considered statistically significant

Estimation of LDL-C in 4 subgroups based on TG ranges (Table 8). Since we had only 3 values whose TG was > 4.51 mmol/dL, we removed these readings from database so we had

only 4 sub-groups Group 1: TG <0.56 mmol/L, Group 2: TG 0.56-1.69 mmol/L, Group 3: TG = 1.70-3.38 mmol/L & Group 4: TG = 3.39-4.51 mmol/L

Table 8: Estimation of LDL-C in 4 subgroups based on TG ranges (<0.56, 0.56–1.69, 1.70–3.38, 3.39–4.51 and > 4.51 mmol/L).

Variable	Mean ± SD	Mean	t-test (Vs Direct-	Person correlation			
		difference	LDL C)	r	Р		
	Group 1: TG <0.56 (mmol/L), (n=15)						
Direct LDL-C	2.05 ± 0.67						
Ahmadi LDL-C	2.21 ± 0.62	-0.16	0.002	0.723**	0.002		
Anandaraja LDL-C	1.97 ± 0.77	0.08	<0.001	0.851**	<0.001		
Chen LDL-C	1.72 ± 0.64	0.33	<0.001	0.800**	<0.001		
de Cordova LDL-C	1.53 ± 0.54	0.52	<0.001	0.792**	<0.001		
Friedewald LDL-C	1.81 ± 0.71	0.24	<0.001	0.807**	<0.001		
Hattori LDL-C	1.70 ± 0.67	0.35	<0.001	0.807**	<0.001		
Puavillai LDL-C	2.22 ± 0.72	-0.17	0.001	0.778**	0.001		
Sampson's LDL-C	1.77 ± 0.74	0.28	<0.001	0.805**	<0.001		
Vujovic LDL-C	1.87 ± 0.71	0.18	<0.001	0.803**	<0.001		
	Group 2: TG 0.56-	1.69 (mmol/L),	(n=630)				
Direct LDL-C	2.95 ± 1.00						
Ahmadi LDL-C	4.04 ± 1.07	-1.09	<0.001	0.711**	<0.001		
Anandaraja LDL-C	2.76 ± 0.93	0.19	<0.001	0.818**	<0.001		
Chen LDL-C	2.61 ± 0.95	0.34	<0.001	0.739**	<0.001		
de Cordova LDL-C	2.40 ± 0.81	0.55	<0.001	0.745**	<0.001		
Friedewald LDL-C	2.66 ± 1.04	0.29	<0.001	0.732**	<0.001		
Hattori LDL-C	2.49 ± 0.98	0.46	<0.001	0.732**	<0.001		
Puavillai LDL-C	3.65 ± 1.11	-0.7	<0.001	0.747**	<0.001		
Sampson's LDL-C	2.70 ± 1.05	0.25	<0.001	0.740**	<0.001		
Vujovic LDL-C	2.80 ± 1.05	0.15	<0.001	0.737**	<0.001		
	Group 3: TG = 1.7	0-3.38 (mmol/L)	, (n=376)				
Direct LDL-C	3.24 ± 0.96						
Ahmadi LDL-C	5.80 ± 1.08	-2.56	<0.001	0.617**	<0.001		
Anandaraja LDL-C	2.77 ± 0.98	0.47	<0.001	0.790**	<0.001		
Chen LDL-C	2.91 ± 0.98	0.34	<0.001	0.735**	<0.001		
de Cordova LDL-C	2.85 ± 0.82	0.39	<0.001	0.733**	<0.001		
Friedewald LDL-C	2.77 ± 1.09	0.47	<0.001	0.731**	<0.001		
Hattori LDL-C	2.60 ± 1.03	0.65	<0.001	0.730**	<0.001		
Puavillai LDL-C	4.65 ± 1.11	-1.40	<0.001	0.719**	<0.001		
Sampson's LDL-C	2.90 ± 1.04	0.34	<0.001	0.737**	<0.001		

Vujovic LDL-C	3.05 ± 1.09	0.19	<0.001	0.734**	<0.001				
	Group 4: TG = 3.3	Group 4: TG = 3.39-4.51 (mmol/L), (n=54)							
Direct LDL-C	3.08 ± 1.12								
Ahmadi LDL-C	7.98 ± 1.01	-4.90	<0.001	0.734**	<0.001				
Anandaraja LDL-C	2.41 ± 1.07	0.67	<0.001	0.757**	<0.001				
Chen LDL-C	2.90 ± 0.93	0.18	0.07	0.758**	<0.001				
de Cordova LDL-C	3.14 ± 0.79	-0.06	0.54	0.760**	<0.001				
Friedewald LDL-C	2.45 ± 1.02	0.63	<0.001	0.754**	<0.001				
Hattori LDL-C	2.29 ± 0.96	0.79	<0.001	0.754**	<0.001				
Puavillai LDL-C	5.61 ± 1.09	-2.54	<0.001	0.760**	<0.001				
Sampson's LDL-C	2.70 ± 0.93	0.37	<0.001	0.754**	<0.001				
Vujovic LDL-C	2.92 1.03	0.16	0.12	0.756**	<0.001				

TG: Triglycerides; SD: Standard deviation; r=Correlation Coefficient; p<0.05 considered statistically significant

Overestimation of LDL was shown by Ahmadi, Puavillai in all TG subgroups while reverse ie underestimation of LDL was shown by all others except de Cordova which showed underestimated LDL at TG < 3.38 mmol/L & overestimation was seen at TG >3.38 mmol/L. LMD & best correlation was shown by Anandaraja formula at TG < 0.56 mmol/L. Vujovic formula showed LMD & good correlation at TG levels in between 0.56-3.38 mmol/L and best correlation at this level was shown by Anandaraja formula which was little higher than Vujovic formula. LMD & best correlation was shown by de Cordova formula at TG > 3.38 mmol/L. Puavillai formula also showed best correlation although it had significant mean difference

Estimation of LDL-C in 3 subgroups based on TC ranges (Table 9a, 9b)

We had 3 subgroups Group 1: TC = < 5.17 mmol/L, Group 2: TC 5.17-6.18 mmol/L & Group 3: TG = > 6.18 mmol/L, in which Ahmadi and Puavillai formulae overestimated LDL values whereas all other formulae underestimated LDL values than Direct-LDL value in all TC sub-groups. LMD & good correlation was shown by Vujovic formula in all subgroups of TC except subgroup 2 where best correlation was seen while Anandaraja showed best correlation ('r' = 0.659 and 'r' = 0.338 in subgroups 1 and 3). Very poor correlation was shown by Ahmadi formula at TC >5.17 mmol/L.

Variable	Mean ± SD	Mean	t-test (Vs Direct-	Person corre	lation	
		unterence	LDL C)	r	Р	
	Group 1: Total cho	lesterol <5.17 (1	nmol/L), (n= 750))		
Direct LDL-C	2.63 ± 0.77					
Ahmadi LDL-C	4.25 ± 1.29	-1.63	<0.001	0.360**	<0.001	
Anandaraja LDL-C	2.29 ± 0.70	0.34	<0.001	0.659**	<0.001	
Chen LDL-C	2.28 ± 0.76	0.34	<0.001	0.543**	<0.001	
de Cordova LDL-C	2.20 ± 0.66	0.42	<0.001	0.542**	<0.001	
Friedewald LDL-C	2.22 ± 0.86	0.41	<0.001	.0526**	<0.001	
Hattori LDL-C	2.08 ± 0.80	0.55	<0.001	0.525**	<0.001	
Puavillai LDL-C	3.52 ± 0.99	-0.90	<0.001	0.506**	<0.001	
Sampson's LDL-C	2.30 ± 0.83	0.32	<0.001	0.545**	<0.001	
Vujovic LDL-C	2.41 ± 0.85	0.21	<0.001	0.538**	<0.001	
Table 9b: Estimation of LDL-C in 3 subgr	oups based on TC rar	nges < 5.17 mmc	ol/L, 5.17-6-18 mm	nol/L and > 6.18	8 mmol/L.	
	Group 2: Total cholesterol = 5.17-6.18 (mmol/L), (n= 244)					
Direct LDL-C	3.77 ± 0.63					
Ahmadi LDL-C	5.84 ± 1.12	-2.06	<0.001	-0.025	0.699	

Table 9a: Estimation of LDL-C in 3 subgroups based on TC ranges < 5.17 mmol/L, 5.17-6-18 mmol/L and > 6.18 mmol/L.

	1			1				
Anandaraja LDL-C	3.52 ± 0.40	0.26	<0.001	0.378**	<0.001			
Chen LDL-C	3.47 ± 0.35	0.30	<0.001	0.504**	<0.001			
de Cordova LDL-C	3.26 ± 0.30	0.51	<0.001	0.402**	<0.001			
Friedewald LDL-C	3.47 ± 0.45	0.30	<0.001	0.498**	<0.001			
Hattori LDL-C	3.25 ± 0.43	0.52	<0.001	0.497**	<0.001			
Puavillai LDL-C	5.06 ± 0.57	-1.28	<0.001	0.189**	0.003			
Sampson's LDL-C	3.57 ± 0.42	0.21	<0.001	0.501**	<0.001			
Vujovic LDL-C	3.70 ± 0.41	0.07	0.051	0.509**	<0.001			
	Group 3: Total cholesterol =>6.18 (mmol/L), (n= 81)							
Direct LDL-C	4.75 ± 0.82							
Ahmadi LDL-C	7.11 ± 1.29	-2.36	<0.001	-0.053	0.636			
Anandaraja LDL-C	4.51 ± 0.65	0.23	0.016	0.338**	0.002			
Chen LDL-C	4.43 ± 0.61	0.32	0.001	0.301**	0.006			
de Cordova LDL-C	4.11 ± 0.51	0.63	<0.001	0.237*	0.033			
Friedewald LDL-C	4.48 ± 0.51	0.27	0.009	0.328**	0.003			
Hattori LDL-C	4.20 ± 0.68	0.54	<0.001	0.329**	0.003			
Puavillai LDL-C	6.30 ± 0.81	-1.55	<0.001	0.120	0.288			
Sampson's LDL-C	4.56 ± 0.70	0.19	0.055	0.333**	0.002			
Vujovic LDL-C	4.75 ± 0.69	0.00	0.990	0.315**	0.004			

TC: Total cholesterol; SD: Standard deviation; r=Correlation Coefficient; p<0.05 considered statistically significant

Estimation of LDL-C in 3 subgroups based on HDL ranges (Table 10).

We had 3 subgroups Group 1: HDL = < 1.03 mmol/L, Group 2: TC 1.03-1.52 mmol/L & Group 3: TG = > 1.52 mmol/L, in which Ahmadi and Puavillai formulae overestimated LDL values whereas all other formulae underestimated LDL values than Direct-LDL value in all HDL sub-groups except Anandaraja formula which showed underestimation of LDL values at HDL < 1.52 mmol/L & overestimated at HDL >1.52 mmol/L. LMD & good correlation was shown by Vujovic formula at HDL < 1.52 mmol/L. Best correlation was exhibited by Chen formula at HDL < 1.52 mmol/L. LMD & best correlation was shown by Anandaraja at HDL > 1.52 mmol/L.

Table 10: Estimation of LDL-C in 3 subgroups based on HDL ranges <1.03 mmol/L, 1.03-1.52 mmol/L and >1.53 mmol/L.

Variable	Mean ± SD	Mean difference	t-test (Vs Direct-	Person correlation	
			LDL C)	r	Р
	Group 1: Total cholesterol <5.17 (mmol/L), (n= 750)				
Direct LDL-C	2.75 ± 1.00				
Ahmadi LDL-C	4.87 ± 1.50	-2.11	<0.001	0.545**	<0.001
Anandaraja LDL-C	2.15 ± 0.90	0.60	<0.001	0.803**	<0.001
Chen LDL-C	2.45 ± 0.86	0.31	<0.001	0.812**	<0.001
de Cordova LDL-C	2.40 ± 0.76	0.36	<0.001	0.799**	<0.001
Friedewald LDL-C	2.34 ± 0.94	0.42	<0.001	0.795**	<0.001
Hattori LDL-C	2.19 ± 0.89	0.56	<0.001	0.795**	<0.001
Puavillai LDL-C	3.90 ± 1.15	-1.15	<0.001	0.738**	<0.001
Sampson's LDL-C	2.44 ± 0.93	0.31	<0.001	0.807**	<0.001
Vujovic LDL-C	2.57 ± 0.95	0.19	<0.001	0.808**	<0.001
	Group 1 : HDL = < 1.03 (mmol/L), (n=340)				
Direct LDL-C	3.16 ± 0.95				

Ahmadi LDL-C	4.89 ±1.51	-1.73	<0.001	0.595**	<0.001	
Anandaraja LDL-C	2.94 ± 0.82	0.22	<0.001	0.797**	<0.001	
Chen LDL-C	2.87 ± 0.83	0.29	<0.001	0.813**	<0.001	
de Cordova LDL-C	2.70 ± 0.75	0.46	<0.001	0.797**	<0.001	
Friedewald LDL-C	2.86 ± 0.89	0.30	<0.001	0.804**	<0.001	
Hattori LDL-C	2.68 ± 0.83	0.48	<0.001	0.804**	<0.001	
Puavillai LDL-C	4.22 ± 1.17	-1.06	<0.001	0.745**	<0.001	
Sampson's LDL-C	2.93 ± 0.89	0.23	<0.001	0.811**	<0.001	
Vujovic LDL-C	3.06 ± 0.91	0.10	<0.001	0.812**	<0.001	
	Group 3: HDL =>1.53 (mmol/L), (n= 100)					
Direct LDL-C	3.32 ± 1.12					
Ahmadi LDL-C	4.28 ± 1.92	-0.96	<0.001	0.596**	<0.001	
Anandaraja LDL-C	3.41 ±1.02	-0.08	0.188	0.832**	<0.001	
Chen LDL-C	2.65 ± 1.70	0.67	<0.001	0.541**	<0.001	
de Cordova LDL-C	2.48 ± 1.43	0.85	<0.001	0.565**	<0.001	
Friedewald LDL-C	2.67 ± 1.89	0.65	<0.001	0.520**	<0.001	
Hattori LDL-C	2.50 ± 1.77	0.82	<0.001	0.519**	<0.001	
Hattori LDL-C Puavillai LDL-C	2.50 ± 1.77 3.81 ± 1.94	0.82 -0.49	<0.001 0.002	0.519** 0.591**	<0.001 <0.001	
Hattori LDL-C Puavillai LDL-C Sampson's LDL-C	2.50 ± 1.77 3.81 ± 1.94 2.75 ± 1.84	0.82 -0.49 0.57	<0.001 0.002 <0.001	0.519** 0.591** 0.538**	<0.001 <0.001 <0.001	

HDL : High Density lipoprotein; SD: Standard deviation; r=Correlation Coefficient; p<0.05 considered statistically significant

Discussion

Serum LDL-C level not only plays a crucial role in development of atherosclerosis which is proved to be a well-known factor in development of coronary heart disease but it also plays a role assessing the treatment session of these patients [1,3]. Estimation of LDL to a very precise level is therefore necessary but a difficult task when direct LDL measurement facility is not available in the lab setup. To overcome this situation many formulae have been developed and surprisingly they show a good positive correlation with direct LDL measurement just like this and other studies [11,12,16,22-26]. In this study the study population was subdivided into various subgroups based on age, TG, TC and HDL levels to validate 9 different formulae. Most of these formulae showed good correlation with D-LDL in between the subgroups. In this study Vujovic formula came out to show least mean difference and good correlation in various subgroups based on different criterias when compared to routinely used Friedewald formula which is in line with Vujovic et al. study in Serbian population and Wadhwa N and Krishnaswamy R study in Indian population. In Wadhwa study Vujovic formula came out to the best at all levels of TG, but in our study at lower TG level ie <0.56 mmol/L Anandaraja formula showed the best correlation which might be due to lesser no of individuals in this subgroup and at higher TG level > 3.38 de Cordova along with Puavillai showed best correlation.

In this study after Vujovic formula some other formulae like Anandaraja, Chen, de Cordova, Puavillai showed best correlation in one or other subgroups. Friedewald formula which is used routinely cannot be used at higher TG, higher total cholesterol or lower HDL levels [27,28].

Different studies are conducted to evaluate effectiveness of formulae alternative to direct LDL estimation by comparing one to two formulae with direct and commonly used Friedewald formula.

Most of these studies evaluated one or two formulae with very few taking more than two formulae like our study in which we compared and correlated 9 formulae. Also the study population was subdivided into various subgroups based on age, TG, TC and HDL levels in our study but the study population was grouped based on TG levels in most of the studies.

The major findings of different studies is listed in Table 11.

 Table 11: Major findings of different studies.

Name of the study using author's name	Area of studied population	Comparison of Friedewald formula with newer formula which is modified Friedewald formula		
Sha MFR et al [12]	Bangladeshi	Regression equation is more accurate to D-LDL when compared with Friedewald		
de Cordova [8]	Brazilian	de Cordova formula is better than Friedewald formula		
Ahmadi [5]	Iranian	Ahmadi formula is better at lower TG values		
Gupta et al [22]	Indian	Friedewald formula is better than Anandaraja formula		
Anandaraja et al [6]	Indian	Anandaraja formula is better in Indian population		
Puavillai et al [10]	Thailand	Puavillai formula is better than Friedewald formula		
Vujovic et al [11]	Serbian	Vujovic formula is better than Friedewald		
Wadhwa et al [29]	Indian	Vujovic Formula is better than any other formula for Indian population which is similar to our study		
Hattori et al [9]	Japanese	Hattori formula is better than Friedewald		
Garule et al [30]	Indian	Puavillai formula is better than any other in Indian population at most TG levels but best is different for different TG levels		
Karkhaneh et al [31]	Iranian	Here groups were divided based on othe biochemical parameters of lipid profile too just like our study With difference in formula that came out to be best alternative to D-LDL was Hattor and de Cordova and our study was Vujovio		
Krishnaveni et al [32]	Indian	Friedewald formula correlated maximally with D-LDL at all TG levels except < 100mg/dL where Anandaraja formula is better		
Teerakanchana et al [33]	Thailand	Friedewald Formula gave inconsistent results at different level of TGs when compared to D-LDL		
Sahu et al [34]	Indian	Friedewald formula gave inconsistent result still remains the choice after D-LDL due to cost effectiveness in country like India		
Warade et al [35] Sudha et al [36]	Indian	D-LDL assay should be considered as and when possible due to variability in results with commonly used Friedewald formula		

Limitations

Though the sample size was good enough overall when the population was subdivided into subgroups some of them had a very low data. The study compared and correlated various formulae of LDL-C with direct assay of LDL by only one method and no ultracentrifugation or precipitation was done which is known as reference method. Individuals having age group < 20, TG < 0.56 and > 4.51 mmol/L were very less so there are chances of bias. > 4.51 mmol/L of TG level data was very in significant and so was excluded. Total cholesterol at higher level >6.18 mmol/L was seen in only 7.5% of whole population which is again low to increase chance of bias. Also, HDL > 1.53mmol/L was seen in 9.3% individuals again small number of samples. One possibility of not getting higher level of TG, TC or HDL is that patients were on treatment with statins. Lastly only 9 formulae were considered for the study which omitted other formulae which could have given different result.

Conclusion

We are in favour of Vujovic formula for Indian population as it looked like a better alternative when compared with most commonly used Friedewald formula and other formulae. However more studies using more sample size particularly taking lower TG and higher TG levels into consideration, and from different ethnicities and geographical areas must be done to be able to use the above method confidently in Indian population.

Abbreviations

Chol: Cholesterol; FBS: Fasting blood sugar; HDL: High-density lipoprotein; LDL-C: Low-density lipoprotein-cholesterol; TC: Total cholesterol; TG: Triglyceride

Acknowledgements

We are thankful to the SMCH institute for allowing us to proceed for the above work.

Special thanks to Dr Gautham for providing with valuable suggestions regarding various graphical plots to be used

Authors' contributions

RK– research study plan. KDS, RKPK, BP research data collection. MN, AS Data analysis, statistical work and manuscript preparation. All authors reviewed and edited the manuscript and approved the final version of the manuscript.

Funding

NIL.

Availability of data and materials

All data generated or analysed during this study are included in this published article.

Ethics approval and consent to participate

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional

and/or national research committee and with the 1975 Helsinki declaration as revised in 2008. This study was approved by the Ethics Committee of Srinivasan Medical College and Hospital (IEC No. 18/2022).

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no conflict of interest.

References

- Stanciulescu LA, Scafa-Udriste A, Dorobantu M. Exploring the Association between Low-Density Lipoprotein Subfractions and Major Adverse Cardiovascular Outcomes—A Comprehensive Review. Int. J. Mol. Sci. 2023; 24(7):6669.
- Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA. 2001;285(19):2486-2497
- Sampson M, Ling C, Sun Q, Harb R, Ashmaig M, Warnick R et al, A New Equation for Calculation of Low-Density Lipoprotein Cholesterol in Patients With Normolipidemia and/or Hypertriglyceridemia. JAMA Cardiol. 2020;5(5):540-548.
- 4. William T Friedewald, Robert I Levy, Donald S Fredrickson, Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, Without Use of the Preparative Ultracentrifuge, Clin. Chem. 1972;18(6):499-502
- Ahmadi SA, Boroumand MA, Gohari-Moghaddam K, Tajik P, Dibaj SM. The impact of low serum triglyceride on LDL-cholesterol estimation. Archives of Iranian Medicine. 2008;11(3):318-321.
- Anandaraja S, Narang R, Godeswar R, Laksmy R, Talwar KK. Low-density lipoprotein cholesterol estimation by a new formula in Indian population. Int. J. Cardiol. 2005;102(1):117-20.
- Chen Y, Zhang X, Pan B, Jin X, Yao H, Chen B et al. A modified formula for calculating low-density lipoprotein cholesterol values. Lipids in health and disease. 2010;9:1-5.
- de Cordova CM, de Cordova MM. A new accurate, simple formula for LDL-cholesterol estimation based on directly measured blood lipids from a large cohort. Ann. Clin. Biochem. 2013;50(1):13-19.
- 9. Hattori Y, Suzuki M, Tsushima M, Yoshida M, Tokunaga Y, Wang Y et al. Development of approximate formula for LDL-chol, LDL-apo B and LDL-chol/LDL-apo B as indices of hyperapobetalipoproteinemia and small dense LDL. Atherosclerosis. 1998;138(2):289-299.

- 10. Puavilai W, Laoragpongse D. Is calculated LDL-C by using the new modified Friedewald equation better than the standard Friedewald equation?. Journal-Medical Association of Thailand. 2004;87(6):589-593.
- 11. Vujovic A, Kotur-Stevuljevic J, Spasic S, Bujisic N, Martinovic J, Vujovic M et al. Evaluation of different formulas for LDL-C calculation. Lipids in health and disease. 2010;9:1-9.
- Sha MF, Siddique AH, Saiedullah M, Khan MA. Evaluation of recently developed regression equation with direct measurement of low-density Lipoprotein Cholesterol in a Bangladeshi population. Evaluation. 2015;5(2).
- Martin SS, Blaha MJ, Elshazly MB, Toth PP, Kwiterovich PO, Blumenthal RS, Jones SR. Comparison of a novel method vs the Friedewald equation for estimating lowdensity lipoprotein cholesterol levels from the standard lipid profile. Jama. 2013; 310(19):2061-2068.
- Planella T, Cortés M, Martinez-Bru C, Gonzalez-Sastre F, Ordonez-Llanos J. Calculation of LDL-cholesterol by using apolipoprotein B for classification of nonchylomicronemic dyslipemia. Clin. Chem. 1997;43(5):808-815.
- Wägner AM, Zapico E, Bonet R, Pérez A, Ordóñez-Llanos J. The effect of VLDL particles on the accuracy of a direct LDL-cholesterol method in type 2 diabetic patients. Clinical biochemistry. 2003; 36(3):177-183.
- Lindsey CC, Graham MR, Johnston TP, Kiroff CG, Freshley A. A Clinical Comparison of Calculated versus Direct Measurement of Low-Density Lipoprotein Cholesterol Level. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy. 2004; 24(2):167-172.
- 17. Tighe DA, Ockene IS, Reed G, Nicolosi R. Calculated low density lipoprotein cholesterol levels frequently underestimate directly measured low density lipoprotein cholesterol determinations in patients with serum triglyceride levels≤ 4.52 mmol/l: An analysis comparing the LipiDirect® magnetic LDL assay with the Friedewald calculation. Clin. Chim.Acta. 2006;365(1-2):236-242.
- Rubiés-Prat J, Reverter JL, Sentí M, Pedro-Botet J, Salinas I, Lucas A, Nogués X, Sanmartí A. Calculated low-density lipoprotein cholesterol should not be used for management of lipoprotein abnormalities in patients with diabetes mellitus. Diabetes care. 1993;16(8):1081-1086
- Hirany S, Li D, Jialal I. A more valid measurement of lowdensity lipoprotein cholesterol in diabetic patients. Am. J.Med.1997;102(1):48-53.
- Johnson R, McNutt P, MacMahon S, Robson R. Use of the Friedewald formula to estimate LDL-cholesterol in patients with chronic renal failure on dialysis. Clin. Chem.1997;43(11):2183-2184.
- Matas C, Cabre M, La Ville A, Prats E, Joven J, Turner PR, Masana L, Camps J. Limitations of the Friedewald formula for estimating low-density lipoprotein cholesterol in alcoholics with liver disease. Clin. Chem. 1994; 40(3):404-406.

- 22. Gupta S, Verma M, Singh K. Does LDL-C estimation using Anandaraja's formula give a better agreement with direct LDL-C estimation than the Friedewald's formula? Indian Journal of Clinical Biochemistry.2012;27:127-133.
- Mora S, Rifai N, Buring JE, Ridker PM. Comparison of LDL cholesterol concentrations by Friedewald calculation and direct measurement in relation to cardiovascular events in 27 331 women. Clin. Chem. 2009;55(5):888-894.
- 24. Onyenekwu CP, Hoffmann M, Smit F, Matsha TE, Erasmus RT. Comparison of LDL-cholesterol estimate using the Friedewald formula and the newly proposed de Cordova formula with a directly measured LDL-cholesterol in a healthy South African population. Ann. Clin. Biochem. 2014;51(6):672-679.
- 25. Martins J, Olorunju SA, Murray LM, Pillay TS. Comparison of equations for the calculation of LDL-cholesterol in hospitalized patients. Clin. Chim.Acta. 2015; 444:137-142.
- 26. Kapoor R, Chakraborty M, Singh N. A leap above Friedewald formula for calculation of low-density lipoprotein-cholesterol. Journal of Laboratory Physicians. 2015; 7(01):011-6.
- Cordova CM, Schneider CR, Juttel ID, Cordova MM. Comparison of LDL-cholesterol direct measurement with the estimate using the Friedewald formula in a sample of 10,664 patients. Arquivos brasileiros de cardiologia. 2004; 83:476-481.
- Jun KR, Park HI, Chun S, Park H, Min WK. Effects of total cholesterol and triglyceride on the percentage difference between the LDL-C concentration measured directly and calculated using the Friedewald formula. Clin.Chem.Lab. Med. 2008;46(3):371-375.
- 29. Wadhwa N, Krishnaswamy R. Comparison of LDLcholesterol estimate using various formulae with directly measured LDL-cholesterol in Indian population. Journal of clinical and diagnostic research: JCDR.2016;10(12):BC11.
- Garule MD, Baravkar PN, Pratinidhi SA. Comparison of LDL-cholesterol estimated by various formulae with directly measured LDL-cholesterol in a tertiary care Centre of Maval Taluka. Int. J.Clin.Biochem. Res. 2018;5(4):583-7.
- 31. Karkhaneh A, Bagherieh M, Sadeghi S, Kheirollahi A. Evaluation of eight formulas for LDL-C estimation in Iranian subjects with different metabolic health statuses. Lipids in health and disease. 2019;18:1-1.
- 32. Krishnaveni P, Gowda VM. Assessing the validity of Friedewald's formula and Anandraja's formula for serum LDL-cholesterol calculation. Journal of clinical and diagnostic research: JCDR. 2015;9(12):BC01.
- Teerakanchana T, Puavilai W, Suriyaprom K, Tungtrongchitr R. Comparative study of LDL-cholesterol levels in Thai patients by the direct method and using the Friedewald formula. Southeast Asian journal of tropical medicine and public health.2007; 38(3):519.

- Sahu S, Chawla R, Uppal B. Comparison of two methods of estimation of low density lipoprotein cholesterol, the direct versus Friedewald estimation. Indian Journal of Clin. Biochem. 2005;20:54-61.
- Warade JP, Dahake H, Kavitha R. Comparison between direct estimation of LDL and Friedewald's formula. IAIM. 2016;3(2):10-17.
- 36. Sudha K, Prabhu KA, Hegde A, Marathe A, Kumar KA. Effect of serum triglycerides on LDL estimation by Friedewald formula and direct assay: A laboratory based study. Int. J. Biomem. Res. 2015; 6(03):189-191.