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Type 2 diabetes mellitus (T2DM) is a multifactorial
disorder where platelet-derived mediators, lipid metabolic
pathways, and exocytotic proteins intersect to drive

B-cell dysfunction. Activated platelets release serotonin,
platelet factor 4 (PF4), sphingosine-1-phosphate (S1P),

and microvesicles that trigger oxidative and endoplasmic
reticulum (ER) stress in pancreatic islets. CD36-mediated
lipid uptake and sphingolipid imbalance intensify ceramide-
driven mitochondrial damage. These insults converge on
exocytotic failure through disruption of DOC2B, a Ca*'-
sensitive mediator of insulin vesicle fusion. Revisiting this
axis clarifies how thromboinflammation and lipotoxicity
orchestrate 3-cell failure and highlights emerging
therapeutic targets for T2DM. This review introduces

a novel integrative perspective linking platelet-derived
mediators, lipid dysregulation, and DOC2B-mediated
exocytotic failure as a unified model of B-cell dysfunction in
T2DM.
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Background and Rationale

Type 2 diabetes mellitus (T2DM) is not solely a metabolic
disease but also a vascular-inflammatory disorder [1-4].
Platelets in T2DM exhibit hyperactivity and release mediators
capable of influencing B-cell function and viability [9-17]. This
concept has evolved into the platelet—p-cell axis, a bidirectional
pathway linking thromboinflammation to insulin secretion
defects. The diversity of platelet mediators-PF4, serotonin, S1P,
and platelet-derived microvesicles-illustrates how hemostatic
cells can influence pancreatic islets beyond coagulation.
Although previous studies have recognized platelet—p-cell

crosstalk in the context of inflammation, oxidative stress,
and lipid overload, none have comprehensively integrated
the DOC2B-mediated exocytotic machinery with platelet-
derived lipid signaling and CD36-driven lipotoxic stress as a
unified mechanism of B-cell failure. This review introduces
a novel tri-axis model-encompassing platelet mediators,
lipid dysregulation, and DOC2B dysfunction-that provides a
systems-level explanation of how thromboinflammatory and
lipotoxic pathways converge to precipitate f-cell demise in
T2DM.

Table 1: Summary of Platelet-Derived Mediators Involved in f-Cell Dysfunction.

Platelet Mediator Main p-Cell Target Molecular Effect Key Mechanism References
Platelet Factor 4 (PF4) | Heparan sulfate Increases intracellular | Induces oxidative stress | [11, 14, 15, 17]
receptor on f3-cell Ca?" and ROS via and impairs insulin
membrane NADPH oxidase gene transcription
activation
Serotonin (5-HT) 5-HT B receptor on Stimulates acute insulin | Protein serotonylation | [11, 37]
B-cells exocytosis; chronic of SNARE components
exposure causes
desensitization
Sphingosine-1- S1PR2/S1PR3 Regulates Ca** Ceramide—S1P rheostat | [6, 7, 31, 38]
Phosphate (S1P) receptors signaling and in B-cell survival
mitochondrial
activity; protective at
physiological levels,
toxic when excessive
Platelet Microvesicles | B-cell cytoplasm and Transfer lipids and Vesicular crosstalk [18,33]
(PMVs) islet endothelium miRNAs; induce ER between platelet and
stress and inflammation | islet cells
Platelet-Derived ROS | B-cell mitochondria Oxidizes DOC2B and | NOX2/NOX4-mediated | [34, 36, 40]
impairs vesicular fusion | chronic oxidative stress

Of note, the clinical relevance of platelet hyperactivity in
T2DM extends beyond hemostasis. Several population-based
analyses demonstrate that abnormal platelet indices-such as
mean platelet volume and platelet distribution width-correlate
strongly with metabolic control and the development of
microvascular complications [9,10,11,13,15]. Such platelet
activation is closely related to systemic inflammation and
oxidative imbalance, both of which accelerate -cell exhaustion
and insulin secretory decline [14,16,17]. These findings
support the notion that platelet dysfunction may precede overt
hyperglycemia and serve as an early biomarker of metabolic
deterioration [11,13,17]. Collectively, these insights strengthen
the hypothesis that the platelet—-cell axis represents a

pivotal link between vascular inflammation and endocrine
dysregulation in T2DM pathogenesis [9—-17].

Platelet Activation and Thromboinflammatory Mediators
Activated platelets in T2DM release a complex repertoire of
cytokines, lipid messengers, and extracellular vesicles. PF4 and
serotonin stimulate intracellular Ca?" signaling and oxidative
stress, while platelet-derived microvesicles (PMVs) deliver
ceramides and miRNAs that impair insulin gene expression
[11,14,16-18,33]. PMV-induced activation of NADPH oxidase
(NO X 2/4) creates persistent ROS that propagates ER stress
and apoptosis.

Lipid Signaling: CD36 and Sphingolipid Dysregulation
CD?36 acts as a lipid gatekeeper for long-chain fatty acids and
oxidized LDL. Its overactivation in f-cells promotes ceramide
accumulation and mitochondrial ROS production [5,30,32].
Simultaneously, sphingolipid imbalance-especially elevated
ceramide and diminished S1P-drives ER stress and apoptosis
[6-8,31,38].

CD?36 serves as a metabolic gatekeeper that facilitates the
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uptake of long-chain fatty acids and oxidized lipoproteins into
B-cells. While transient activation of CD36 supports membrane
remodeling and energy supply for insulin secretion, chronic
overexpression under hyperglycemic and lipotoxic conditions
drives excessive fatty acid influx, ceramide accumulation, and
reactive oxygen species (ROS) generation [5, 30, 32]. This
oxidative and ER stress environment disrupts mitochondrial
respiration and promotes apoptotic cascades, contributing
directly to B-cell dysfunction [31, 38].

In parallel, sphingolipid metabolism-particularly through
sphingosine-1-phosphate (S1P) and ceramide-plays a dual role
in maintaining B-cell integrity. Physiological S1P signaling

via S1PR2 and S1PR3 supports insulin secretion and cellular
resilience; however, imbalance in the ceramide/S1P ratio shifts
the intracellular milieu toward apoptosis and inflammation [6,

7,31, 38]. Activation of neutral sphingomyelinase-2 (nSMase2)
under hyperglycemic conditions further amplifies ceramide
production, establishing a self-perpetuating cycle of lipotoxic
stress.

Taken together, aberrant CD36 signaling and sphingolipid
dysregulation form a lipid-centric framework of B-cell injury
that intertwines metabolic overload with oxidative stress.
Importantly, these lipid pathways also sensitize -cells to
platelet-derived mediators-such as S1P and microvesicle lipids-
linking lipid metabolism to thromboinflammatory crosstalk
within the platelet—p-cell axis [6, 7, 18, 30-33, 38]

This integrative lipidomic dysfunction couples metabolic
overload with platelet activation, reinforcing the feed-forward
cycle of inflammation and B-cell failure.

Table 2: Relationship between CD36 and Sphingolipid Pathways in -Cell Dysfunction.

Lipid Pathway Core Components Effect on pg-Cells Mechanistic Evidence References
CD36-mediated lipid CD36, oxidized LDL, | Ceramide CD36 overexpression [5, 30, 32]
uptake long-chain fatty acids accumulation, ROS triggers mitochondrial

generation, apoptosis and ER stress
Ceramide synthesis Neutral Activates caspase-3, Ceramide inhibits [6,7, 31, 38]
pathway sphingomyelinase-2 CHOP, and suppresses | SNARE complex
(nSMase2), serine GSIS assembly
palmitoyl transferase
S1P signaling S1PR2/S1PR3 Maintains cell survival | Regulates balance [6, 31, 38]
at moderate levels, between f-cell
pro-apoptotic when proliferation and
excessive apoptosis
Lipid vesicle crosstalk | Platelet-derived Transfers ceramide and | Mediates intercellular [18, 28, 33]
microvesicles inflammatory lipids to | lipotoxicity via vesicle
B-cells transport

DOC2B and Exocytotic Failure

DOC2B (Double C2-like Domain ) is a calcium-sensitive
protein critical for insulin granule fusion. Under oxidative and
nitrosative stress, DOC2B undergoes conformational changes
and post-translational modifications that impair its SNARE
interaction [29,35,40]. Ceramide accumulation and ROS

from platelet activity synergistically reduce DOC2B stability,
leading to defective glucose-stimulated insulin secretion
(GSIS). DOC2B (Double C2-like Domain ) serves as a
critical Ca?* sensor that regulates insulin granule fusion with
the plasma membrane. Functionally, it bridges glucose-induced
Ca?" influx to the SNARE complex-comprising syntaxin-1A,
SNAP-25, and VAMP2-to ensure the timing and efficiency

of insulin release [29, 35]. In healthy B-cells, rapid DOC2B
phosphorylation at tyrosine residues enables synchronous
exocytosis during the first-phase glucose-stimulated insulin
secretion (GSIS). However, diabetic stressors-such as ROS
accumulation and S-nitrosylation-induce structural alterations
that weaken DOC2B—-SNARE interactions, resulting in delayed

or incomplete vesicle fusion [34, 36, 40].

Beyond its exocytotic function, DOC2B also modulates
cytoskeletal rearrangement and vesicle trafficking, processes
that depend on balanced redox signaling. Ceramide-mediated
proteasomal degradation and endoplasmic-reticulum stress
markedly decrease DOC2B expression, linking lipid overload
to secretory insufficiency [31, 38]. Interestingly, recent
evidence shows that -cells under metabolic stress can release
DOC2B within extracellular vesicles, suggesting a potential
adaptive or compensatory mechanism and a measurable
biomarker of B-cell distress [29].

Taken together, these findings position DOC2B as a
convergence point where oxidative, nitrosative, and lipotoxic
stress intersect to impair insulin exocytosis. Targeting
post-translational regulation of DOC2B-by preventing
S-nitrosylation, enhancing phosphorylation, or stabilizing its
protein structure-may represent a promising strategy to restore
[-cell secretory competence [29, 35, 36, 40].
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Table 3: Molecular Links between Oxidative Stress and Impaired Insulin Exocytosis via DOC2B.

phosphorylation

Mediator / Pathway Effect on DOC2B Impact on Insulin Secretion References

ROS (NOX2/NOX4) Oxidation of cysteine residues in Weakens SNARE complex binding [36]
DOC2B

S-nitrosylation Modification of tyrosine residues in Disrupts vesicle docking and exocytosis [40]
DOC2B

Ceramide Promotes proteasomal degradation of Reduces GSIS and granule stability [31, 38]
DOC2B

Loss of tyrosine Inactivates DOC2B Impairs insulin granule fusion and release | [35]

Extracellular vesicle export

vesicles

Induces DOC2B secretion into plasma

Serves as a marker of B-cell stress [29]

Interestingly, DOC2B acts as a calcium sensor that interacts
dynamically with syntaxin-1A, Munc18-1, and SNAP25 to
fine-tune the timing and amplitude of insulin vesicle release
[35]. Under physiologic conditions, Ca?" influx triggers
conformational changes within its tandem C2 domains,
ensuring synchronized glucose-stimulated insulin secretion
(GSIS) [29,35]. However, oxidative stress and nitrosative
modifications (such as S-nitrosylation of tyrosine residues)
disrupt DOC2B conformation and its binding to SNARE
proteins, resulting in asynchronous vesicle docking and
diminished first-phase insulin secretion [34,36,40]. Lipid-
induced ceramide accumulation and proteasomal degradation
further exacerbate DOC2B loss, forming a mechanistic bridge
between lipotoxicity and exocytotic failure [31,38]. These
molecular events not only explain the blunted GSIS observed
in T2DM but also highlight DOC2B as a promising therapeutic
checkpoint to restore B-cell competency [29,35,40].

Integrative Mechanism

The Platelet—B-Cell Axis Revisited

This section introduces the novel integrative model proposed
in this review, which unifies platelet activation, lipid
dysregulation, and DOC2B exocytotic failure into a single
mechanistic framework. This conceptual triad has not been
previously described in existing platelet or B-cell literature.

The platelet—B-cell axis can be visualized as a unified network:
platelet activation — release of mediators (PF4, S1P, PMVs)
— CD36/nSMase-2-driven ceramide accumulation — ROS/
ER-stress-mediated DOC2B dysfunction — insulin exocytosis
failure — hyperglycemia — further platelet activation [5-8,11—
18,28-36,38—40].
The illustration should display three interconnected modules:

1. Activated Platelets (releasing PF4, S1P,
serotonin, PMVs)

2. Lipotoxic Pathway (CD36, ceramide,
NOX2/4, ER stress)

3. Exocytotic Machinery (DOC2B, SNARE,
Insulin Vesicle)
Arrows between modules represent the self-reinforcing loop
from metabolic overload to B-cell demise.
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Figure 1: Integrative Mechanism of B-Cell Dysfunction through the Platelet-Lipid—-DOC?BAxis Created with BioRender.

com (accessed 2025).
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Clinical and Translational Implications

Therapeutically, targeting the platelet—-cell axis could
complement glucose-centric care. Antiplatelet agents, CD36
inhibitors, sphingolipid modulators, and DOC2B-stabilizing
compounds hold potential to restore B-cell integrity [5,11—
17,30-32,35,38-40]. Circulating biomarkers such as platelet
microvesicles, sphingolipid ratios, and soluble DOC2B warrant
further evaluation as indicators of B-cell stress and treatment
response.

Beyond pharmacologic modulation, integrating platelet and
lipid biomarkers into metabolic screening may refine early
detection of B-cell deterioration. Combined assessment of
circulating platelet-derived vesicles, ceramide/S1P ratios,

and soluble DOC2B levels could identify subclinical B-cell
stress before overt hyperglycemia manifests [18,28,31,33].
Furthermore, experimental models demonstrate that
simultaneous targeting of platelet activation, CD36-mediated
lipid uptake, and sphingolipid imbalance can synergistically
preserve insulin secretion and metabolic stability [5,6,30-32].
In particular, S1P receptor modulators, ceramide synthesis
inhibitors, and CD36 antagonists are emerging as novel
adjuncts to glucose-lowering therapy [6,7,31,38]. Translating
these mechanistic insights into clinical practice could open new
therapeutic avenues by attenuating platelet-driven oxidative
stress and maintaining DOC2B functionality [11,15,29,35,40].

Conclusion and Future Perspectives

Revisiting the platelet—-cell axis highlights an
underappreciated dimension of metabolic crosstalk in type 2
diabetes mellitus, where thromboinflammatory signaling, lipid
imbalance, and vesicular exocytotic failure act in concert to
drive B-cell demise. This integrative model not only bridges
vascular and endocrine pathology but also reframes diabetes
as a disorder of intercellular communication rather than
isolated metabolic dysfunction. Future investigations should
employ longitudinal platelet transcriptomic and lipidomic
profiling alongside molecular indices of B-cell exocytosis-such
as DOC2B, SNARE integrity, and ceramide/S1P ratios-to
delineate temporal disease trajectories and reveal precision-
targetable pathways [1, 5-7, 11-12, 20-22, 28-31, 34-36,
38-40].

Ultimately, translating these mechanistic insights into clinical
practice could yield novel biomarkers for early detection

and therapeutic strategies aimed at restoring B-cell resilience
through modulation of platelet and lipid signaling networks.
In conclusion, our review contributes a new conceptual
understanding by framing T2DM as a disorder of intercellular
communication, in which platelet-derived mediators, lipid
metabolic stress, and DOC2B dysfunction act synergistically.
This integrative approach not only connects vascular and
endocrine pathology but also establishes a mechanistic bridge
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that may guide the development of platelet-targeted and
DOC2B-modulating therapies.
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